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Abstract

In expositions of Probability Theory, probability functions are defined either on
sets of a sigma algebra or on propositions of a propositional language. This paper
advocates in favor of defining probability functions on propositions. To this end,
it will be shown that probability functions on propositions are natural (invariant
preserving) generalizations of evaluation functions from propositional logic, giving
an elegant grounding and foundation for the subject. In addition, we show that
elementary outcomes can be understood as special kinds of propositions, therefore
making a propositional approach to probability theory more fundamental.

1 Introduction

There are generally two main frameworks for setting up probability theory: probability
on propositions (the propositional framework) and probability on sets of elementary
outcomes (the set-theoretic framework). The set-theoretic framework is considered
standard and is used by most textbooks, courses, and papers. Propositional frame-
works are currently most often employed by Bayesian approaches to probability theory
and epistemology. [1], [7], [5] Consequently, many statisticians, students, and practi-
tioners are only familiar with the set theoretic framework for probability theory. As
expressed in a classic textbook on the subject, “Kolmogorov’s vision of founding prob-
ability theory on the concept of a normalized measure space has become the accepted
orthodoxy.” [2] The aim of this paper is to support a wider adoption of a propositional
framework for probability theory by arguing that (i) a propositional framework founds
probability theory as a natural extension of propositional logic and (ii) the elemen-
tary outcomes in the set-theoretic framework can be understood more fundamentally
in terms of propositions. The paper is organized as follows. Section 2 outlines the set-
theoretic framework as it is described in standard literature. Section 3.1 provides an
introduction to propositional logic. Section 3.2 shows how we can naturally extend
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propositional logic to probability theory (and to a probabilistic logic). Section 4 com-
pares the two frameworks and demonstrates the conceptual priority of a propositional
framework over a set-theoretic framework.

In this paper, we will only consider finitely additive probability functions on finite
probability spaces. Some might object that restriction to the finite case renders any
theory developed of little value, given how many applications of probability theory
require infinite spaces and countable additive measures. This is a fair objection. I
would hardly make the claim that the propositional framework I will support in this
paper is complete. It is far from it without a proper response to how to handle cases
and applications that are currently handled by infinite spaces. Nevertheless restricting
attention to the finite case can have considerable value. Is the theory of matrices of
little value because it depends on restricting attention to finite vector spaces? Clearly
not. In fact matrices helps one develop their intuition for linear operators in the
infinite case. What is presented here is merely my initial steps at thinking through
the foundations of probability theory.

2 Set-theoretic Framework

By a set-theoretic framework, I mean the approach to probability theory (usually
done via measure theory) which begins by defining probability on sets of ‘elementary
outcomes’ called ‘events’. As expressed in a standard probability text by Bauer, in this
framework, “the goal of probability theory is to provide methods of describing and
analyzing experiments with random outcomes. In particular, mathematical models for
an adequate study of such experiments involving chance have to be developed. In such
experiments we are interested in the observation of ‘events’ or ‘random magnitudes’,
as well as the calculation of the ‘probability’ with which such events occur.” [2]

What are these ‘events’ and ‘experiments’? In the set-theoretic framework, these
notions are defined axiomatically via Kolomogorov’s axioms. Bauer is explicit about
the use of axiomatic foundations for the subject. “For the construction of a theory of
probability intrinsic definitions of concepts like ‘event’ and ‘probability’ are not nec-
essary, and in fact, to avoid logical difficulties and to give the theory the broadest and
easiest applicability, such definitions are not worth attempting. Just as in the other
areas of mathematics mentioned, in probability theory everything comes down to the
formal properties of the concepts.”[2] Essentially, the axioms used to give meaning
to ‘event’ and ‘experiment’ are taken for granted because they give formal properties
which seem to work. We will later see that the defining characteristics of probability
functions (in a propositional framework) are supported by more than an ‘it seems to
work’ argument and that we can in fact meaningful understand elementary outcomes
(and consequently ‘events’ and ‘experiments’ which are made up of those elementary
outcomes) in terms of propositions.

The standard axiomatic development is as follows. “Let Ω be a nonempty point set
representing all possible outcomes of an experiment, and let Σ be an algebra of subset
of Ω. The members of Σ, called events, are the collection of outcomes that are of
interest to the experimenter.” [8] By an algebra one means a set of subsets of Ω which
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is “nonempty and is closed under finite unions and complements. Let P : Σ→ R+ be
a mapping, called a probability [function], defined for all elements of Σ so that the
following rules are satisfied.

For each A ∈ Σ, 0 ≤ P (A) and P (Ω) = 1. (1)

If A,B ∈ Σ, A ∩B = ∅ then P (A ∪B) = P (A) + P (B). (2)

Such a P is called a ‘finitely additive probability [function].” Sometimes the second
axiom is given by a stronger “countable additivity” condition where if “A1, A2, ... are
disjoint events of Ω, such that A =

⋃∞
k=1Ak is also an event of Ω, then P (A) =∑∞

k=1 P (Ak).” [8] Because we are restricting our attention in this paper to finite sample
spaces we only need finite additivity.

An alternative characterization is given in [2] via measure theory. “The basic context
for defining probability-theoretic concepts is ... [a] normalized measure space... desig-
nated (Ω,A, P ), where Ω is a set, A a σ-algebra in Ω [previously denoted Σ] and P a
measure on A normalized by P (Ω) = 1.”

3 Proposition-theoretic Framework

One of the important differences between the set-theoretic and propositional frame-
works is that the axioms which characterize a probability function in the propositional
framework are not justified on the ground of simply “giving the correct formal prop-
erties”. Instead the axioms can be understood as generalizing classical propositional
logic. The motivation for seeking such a generalization comes from the observation
that in day-to-day life we do not really know what is in fact true/false. Instead, we
often want to express a degree of certainty in statements and be able to correctly
reason under a lack of complete certainty. The semantics of propositional logic only
assigns two values True (1) and False (0) to propositions so it is natural to wonder if
we can extend the semantics of propositional logic to instead assign graded values of
belief to propositions.

3.1 Propositional Logic

3.1.1 Introductory Concepts

How do we go about extending the semantics of propositional logic to graded values?
Let’s first review the semantics of propositional logic. I use set notation here because
it is the standard formalism, but one could use something closer to a type theory
instead to avoid the infinite sets.

Definition 1. A finite propositional language L consists of a set of atomic
propositions

Pr = {A1, ..., An},
called atomic propositions, some connectives (which we will restrict to) ¬,∧,∨,
and a set of propositions, F , which is recursively defined in terms of atomic
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propositions and connectives like so:
A1, ..., An ∈ F ,
¬ϕ ∈ F if ϕ ∈ F ,
(ϕ ∧ ψ) ∈ F if ϕ ∈ F and ψ ∈ F ,
(ϕ ∨ ψ) ∈ F if ϕ ∈ F or ψ ∈ F .

(3)

Example 1. Consider a scenario where we have three balls indexed 1, 2, 3 in a bag
and we draw from the bag. We can express this scenario with the atomic propositions
A1, A2, A3 where Ai means ball i was drawn. In this case, ¬A1 means ball 1 was not
drawn (A2 ∧A3) means ball 2 and ball 3 were both drawn, ((A1 ∨A2) ∨A3) which we
can just write as (A1 ∨A2 ∨A3) because of associativity of disjunctions means either
ball 1 or ball 2 or ball 3 was drawn.

In Example 1 we might want to be able to express that at least one of the balls
must be drawn. In other words, that ‘ball 1 or ball 2 or ball 3 was drawn’ is true. In
the semantics of propositional logic we use an evaluation function to map propositions
to the values true (1) or false (0). An evaluation v : F → {0, 1} is often characterized
using a mix of natural language and mathematics like so:

v(¬ϕ) =

{
1 if v(ϕ) = 0

0 if v(ϕ) = 1

v(ϕ ∧ ψ) =

{
1 if v(ϕ) = 1 and v(ψ) = 1

0 if v(ϕ) = 0 or v(ψ) = 0

v(ϕ ∨ ψ) =

{
0 if v(ϕ) = 0 and v(ψ) = 0

1 if v(ϕ) = 1 or v(ψ) = 1
.

But, in using natural language, this is somewhat imprecise and as we will see, less illu-
minating. Instead we will characterize the same rules using mathematical operations.

Definition 2. An evaluation is a function v : F → {0, 1} which maps every propo-
sition to its truth value and which satisfies the following conditions for propositions
ϕ, ψ:

v(¬ϕ) = 1− v(ϕ) (4)

v(ϕ ∧ ψ) = v(ϕ) · v(ψ) (5)

v(ϕ ∨ ψ) = v(ϕ) + v(ψ)− v(ϕ) · v(ψ) (6)

A truth assignment is the restriction of a valuation function to the set of atomic
propositions, v|Pr : {A1, ..., An} → {0, 1} which maps atomic propositions to their
truth value.
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We will denote the set of all evaluations for a finite propositional language as

V.

Once a truth assignment is specified, there is only one possible evaluation function
which is consistent with it (given recursively by the conditions in Definition 2).
Proposition 1. For any truth assignment v|Pr : {A1, ..., An} → {0, 1}, there is
exactly one evaluation v for which v(Ai) = v|Pr(Ai) for all Ai ∈ {A1, ..., An}.

Proof. We will not give a full proof here as it would require defining the complexity
of a proposition which is not necessary for the purposes of the paper. The result
intuitively follows Definition 2 because the only evaluation satisfying 4, 5, 6 would be
recursively defined as followed:

v(Ai) := v|Pr(Ai) if Ai is an atomic proposition,

v(¬ϕ) := 1− v(ϕ) if ϕ is a proposition,

v(ϕ ∧ ψ) := v(ϕ) · v(ψ) if ϕ, ψ are propositions,

v(ϕ ∨ ψ) := v(ϕ) + v(ψ)− v(ϕ) · v(ψ) if ϕ, ψ are propositions.

Usually evaluations are defined as extensions of truth assignments, but because
probability functions will generalize evaluation functions, we choose to emphasize eval-
uations as their own object and a truth assignment as a restriction of an evaluation.

Example 2. Continuing from Example 1, we can now make our intuition explicit. To
express that (A2 ∧A3) can’t ever happen (we can’t draw ball 2 and ball 3 at the same
time) we can write v(A2 ∧A3) = 0. To express that one of the balls must be drawn we
can write v(A1 ∨A2 ∨A3) = 1.

An important tool in the propositional logic toolkit is truth tables. Truth tables
are a compact way to consider all possible truth-assignments (and consequently all
possible evaluations). The first n columns give all the possible combinations of truth
values for the atomic propositions and the later columns give the evaluation of
particular propositions under those different combinations.

Example 3. If we have three atomic propositions A1, A2, A3 then the truth table
would be:
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A1 A2 A3 A2 ∧A3 A1 ∨A2 ∨A3 ¬A2 ∨ ¬A3 ¬(A2 ∧A3)

1 1 1 1 1 0 0
1 1 0 0 1 1 1
1 0 1 0 1 1 1
1 0 0 0 1 1 1
0 1 1 1 1 0 0
0 1 0 0 1 1 1
0 0 1 0 1 1 1
0 0 0 0 0 1 1

The 6th row corresponds to the evaluation, v(A1) = 0, v(A2) = 1, v(A3) = 0, v(A2 ∧
A3) = 0 and v(A1 ∨A2 ∨A3) = 1, v(¬A2 ∨ ¬A3) = 0, v(¬(A2 ∧A3)) = 0.

The purpose of propositional logic is not only to help us express scenarios like Example
1 formally, but rather we want to express scenarios formally so to be able to reason
about them precisely. We want to be able to infer what we should believe from what
we already assume. The concept we use to express valid inference in propositional logic
is entailment.

Definition 3. We say propositions (also called the premises) ϕ1, ..., ϕk entail
proposition (also called the conclusion) ψ, denoted

ϕ1, ..., ϕk |= ψ,

exactly when for every evaluation v,

if v(ϕ1) = 1, . . . , v(ϕk) = 1 then v(ψ) = 1. (7)

We say two propositions ϕ and ψ are logically equivalent, denoted

ϕ ≡ ψ,

exactly when they entail each other,

ϕ |= ψ and ψ |= ϕ. (8)

Definition 4. We call τ is a tautology exactly when it is true under every evaluation,

|= τ, (9)

and we say ⊥ is a contradiction exactly when it is false under ever evaluation

|= ¬⊥. (10)

Example 4. Truth tables help us identify entailments. Consider the Table from Exam-
ple 3 and the following examples which we will interpret in the context of Example
1.
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1. A1 |= A1 ∨A2 ∨A3 since if v(A1) = 1 then by Definition 2, v(A1 ∨A2 ∨A3) = 1.
This makes sense because if we know we drew ball 1 then certainly we drew ball
1 or ball 2 or ball 3. The reverse, however, is not true!

2. A1∨A2∨A3 ̸|= A1. We can see this from the truth table. There is a row in which
A1 ∨A2 ∨A3 is true but the A1 is not. In particular, row 7 gives us the counter-
example v(A1 ∨ A2 ∨ A3) = 1 but v(A1) = 0. Just because we draw one of the
balls does not guarantee that we drew ball 1 since we could have drawn ball 3, for
example.

3. ¬A2∨¬A3 ≡ ¬(A2∧A3). We can see this from the truth table because the entries
in both of their columns always match. In the context of the example, this means
that to believe that we cannot draw ball 2 and ball 3 at the same time is the same
as believing that either we did not draw ball three or we did not draw ball 2.

3.1.2 Atomic States

The final concepts of propositional logic that we will need to introduce are atomic
states and the disjunctive normal form of a proposition. We will first define them and
then explain them in the context of the truth tables.

Definition 5. In a propositional language with atomic propositions A1, ..., An an
atomic state is a proposition of the form

±A1 ∧ ±A2 ∧ ... ∧ ±An

where +Ai stands in for Ai and −Ai stands in for ¬Ai. We denote the set of atomic
states by

Ω.
Denote by

A+(ω), A−(ω)
the set of atomic propositions which appear without/with a negation (respectively) in
the atomic state ω.

Example 5. Let ω = A1 ∧ ¬A2 ∧A3 = +A1 ∧ −A2 ∧+A3.

A+(ω) = {A1, A3},
A−(ω) = {A2}.

Proposition 2. In a propositional language with atomic propositions A1, ..., An, there
are 2n atomic states.

Proof. This follows from a simple counting argument. For each A1, ..., An we either
choose a + or a − sign.

Definition 6. In a propositional language with atomic propositions A1, ..., An, we
associate each atomic state ω with the evaluation

vω(A) :=

{
1 A ∈ A+(ω)

0 A ∈ A−(ω)
. (11)
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Technically (11) only defines a truth assignment but that truth assignment is
uniquely extendable to an evaluation by Proposition 1.

Proposition 3. In a propositional language with atomic propositions A1, ..., An, the
function f : Ω→ V mapping atomic states to evaluations by ω 7→ vω is a bijection.

Proof. First we show that f is a function. Suppose vω = vω′ . Then for every atomic
state Ai, vω(Ai) = vω′(Ai). By (11), this means A+(ω) = A+(ω′) and A−(ω) =
A−(ω′). Since ω, ω′ consist of the same conjunction of of atomic states (and their
negations) they are the same atomic state, ω = ω′.
Now we show that f is a bijection. Suppose ω ̸= ω′. Then, without loss of generality,
there is some atomic state A such that A ∈ A+(ω) and A ̸∈ A+(ω′). Therefore
vω(A) = 1 and vω′(A) = 0 so vω ̸= vω′ . This shows that f is one-to-one. By Definition
2, it is easy to see that there are 2n possible truth assignments and so 2n possible
evaluations by Proposition 1. Using Proposition 2, |Ω| = |V |, which means f must be
a bijection.

Proposition 4. vω(ω
′) = 1 iff ω′ = ω.

Proof. Let

ω = +A1 ∧ ... ∧+Ak ∧ −Ak+1 ∧ ... ∧ −An,
ω′ = +Ai1 ∧ ... ∧+Aik ∧ −Aik+1

∧ ... ∧ −Ain .

Clearly,
A+(ω) = {A1, . . . , Ak} and A−(ω) = {Ak+1, . . . , An}

and
A+(ω′) = {Ai1 , . . . , Aik} and A−(ω′) = {Aik+1

, . . . , Ain}.
Suppose vω(ω

′) = 1. Then by recursive application of Definition 2,

vω(Ai1) = 1, ..., vω(Aik) = 1

and
vω(¬Aik+1

) = 1, ..., vω(¬Ain) = 1

which means
vω(Aik+1

) = 0, ..., vω(Ain) = 0.

By (11),
A+(ω) = {Ai1 , . . . , Aik} and A−(ω) = {Aik+1

, . . . , Ain}.
Therefore, A+(ω) = A+(ω′) and A−(ω) = A−(ω′), which means that ω = ω′.
Suppose ω = ω′. (11) and Definition 2 imply that vω(ω) = 1.

Propositions 3 and 4 show us that there is a special bijection between evaluations
and atomic states. This special bijection gives us a deeper understanding of the con-
nection between evaluations and rows in the truth table. Each atomic state is true in
exactly one row (evaluation). We can read of which atomic state is true in a row by
looking at the first n columns. An example will make this clearer.
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Example 6. Consider the truth table:

atomic state A1 A2 A3 A2 ∧A3 A1 ∨A2 ∨A3 ¬A2 ∨ ¬A3 ¬(A2 ∧A3)

A1 ∧A2 ∧A3 1 1 1 1 1 0 0
A1 ∧A2 ∧ ¬A3 1 1 0 0 1 1 1
A1 ∧ ¬A2 ∧A3 1 0 1 0 1 1 1
A1 ∧ ¬A2 ∧ ¬A3 1 0 0 0 1 1 1
¬A1 ∧A2 ∧A3 0 1 1 1 1 0 0
¬A1 ∧A2 ∧ ¬A3 0 1 0 0 1 1 1
¬A1 ∧ ¬A2 ∧A3 0 0 1 0 1 1 1
¬A1 ∧ ¬A2 ∧ ¬A3 0 0 0 0 0 1 1

The atomic state A1∧A2∧A3 is true only in the first row since that is the only case
in which all the atomic propositions are true. A1∧A2∧ ≠ A3 is true only in the second
row since that is the only case in which A1, A2 are true and A3 false (¬A3 true). We
can therefore label each row with the atomic state which it uniquely makes true.

Proposition 5. In a propositional language with atomic propositions A1, ..., An, for
each atomic state ω, vω(ϕ) = 1 iff ω |= ϕ.

Proof. (→) Suppose vω(ϕ) = 1. To show that ω |= ϕ, we must prove that all evalua-
tions under which ω is true, also make ϕ true. This is trivial because by Proposition
4 and Definition 6 we know there is only one evaluation which makes ω true, vω, and
by assumption vω(ϕ) = 1. Therefore ω |= ϕ.
(←) Suppose ω |= ϕ. Then any for any evaluation v for which v(ω) = 1 it must also
be the case that v(ϕ) = 1. vω is one such evaluation, so vω(ϕ) = 1.

Theorem 6. In a propositional language with atomic propositions A1, ..., An, every
proposition ϕ is logically equivalent to a unique disjunction of atomic states, called the
disjunctive normal form for the proposition, given by∨

ω|=ϕ

ω.

Proof. Let ϕ be a proposition.
Existence: We will show that ϕ and

∨
ω|=ϕ

ω are logically equivalent.

(→) Suppose v(ϕ) = 1. By Proposition 4, there is some atomic state, ω, for which
v(ω) = 1. By Proposition 5, ω |= ϕ. Therefore by Definition 2, v(

∨
ω|=ϕ

ω) = 1. Finally,

by Definition 3, ϕ |=
∨
ω|=ϕ

ω.

(←) Suppose v(
∨
ω|=ϕ

ω) = 1. This means there must be some ω∗, such that ω∗ |= ϕ for

which v(ω∗) = 1. Since ω∗ |= ϕ, it follows that v(ϕ) = 1. Thus,
∨
ω|=ϕ

ω |= ϕ.
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By showing entailment in both direction, by Definition 3, we have shown logical equiv-
alence. We now show uniqueness.
Uniqueness: Suppose O ⊆ Ω and

∨
ω∈O

ω is logically equivalent to ϕ. If there is a ω ∈ O

for which w ̸|= ϕ then under the evaluation vω, vω(
∨
ω∈O

ω) = 1 and vω(ϕ) = 0 which

is a contradiction. If there is some ω for which ω |= ϕ and which is not in O, then
vω(ϕ) = 1 and because vω uniquely makes ω true and all other atomic states false,
vω(

∨
ω∈O

ω) = 0. Again a contradiction. We see that O must consist of exactly the

atomic states ω which entail ϕ, as desired.

Example 7. The disjunctive normal form of a proposition can be read off from a
truth table. It will help to present a couple of explicit examples from which the pattern
is made clear.

1. A2 ∧A3 ≡ (A1 ∧A2 ∧A3) ∨ (¬A1 ∧A2 ∧A3)

atomic state A1 A2 A3 A2 ∧A3 A1 ∨A2 ∨A3 ¬A2 ∨ ¬A3 ¬(A2 ∧A3)

A1 ∧A2 ∧A3 1 1 1 1 1 0 0
A1 ∧A2 ∧ ¬A3 1 1 0 0 1 1 1
A1 ∧ ¬A2 ∧A3 1 0 1 0 1 1 1
A1 ∧ ¬A2 ∧ ¬A3 1 0 0 0 1 1 1
¬A1 ∧A2 ∧A3 0 1 1 1 1 0 0
¬A1 ∧A2 ∧ ¬A3 0 1 0 0 1 1 1
¬A1 ∧ ¬A2 ∧A3 0 0 1 0 1 1 1
¬A1 ∧ ¬A2 ∧ ¬A3 0 0 0 0 0 1 1

2. A2 ≡ (A1 ∧A2 ∧A3) ∨ (A1 ∧A2 ∧ ¬A3) ∨ (¬A1 ∧A2 ∧A3) ∨ (¬A1 ∧A2 ∧ ¬A3)

atomic state A1 A2 A3 A2 ∧A3 A1 ∨A2 ∨A3 ¬A2 ∨ ¬A3 ¬(A2 ∧A3)

A1 ∧A2 ∧A3 1 1 1 1 1 0 0
A1 ∧A2 ∧ ¬A3 1 1 0 0 1 1 1
A1 ∧ ¬A2 ∧A3 1 0 1 0 1 1 1
A1 ∧ ¬A2 ∧ ¬A3 1 0 0 0 1 1 1
¬A1 ∧A2 ∧A3 0 1 1 1 1 0 0
¬A1 ∧A2 ∧ ¬A3 0 1 0 0 1 1 1
¬A1 ∧ ¬A2 ∧A3 0 0 1 0 1 1 1
¬A1 ∧ ¬A2 ∧ ¬A3 0 0 0 0 0 1 1
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3.2 Probability as Extended Logic

In this section we will present how probability theory on propositions follows as a
natural extension of propositional logic. The way this is usually done is via a represen-
tation theorem like Cox’s Theorem [1, Ch. 1, 2] which gives some seemingly innocuous
assumptions about what a probability function should satisfy and shows that those
assumptions imply the rules of conditional probability theory like the product rule
P (A ∧ B | C) = P (A | B ∧ C)P (B | C). The reason Cox’s Theorem is sometimes
understood by people as showing that probability theory naturally extends logic is
that part of the ‘innocuous assumptions’ are that conditional probability assignments
are consistent with propositional logic. A precise account of this is given in [6]. One
discomfort I have with Jaynes’ foundations is that probability assignments are always
conditional and that the logical environment of propositions is not made explicit [1,
Ch. 1, 2].

The account that will be presented here is different. I will be showing that proba-
bility assignments naturally generalize evaluations. Crucially, probability assignments
will not need to be conditional (just as evaluations are not conditional). I do not use a
representation theorem but rather appeal to the aesthetic mathematical sense which
appears to guide much of mathematics. My hope is that the reader will find the con-
nections between evaluations and probability assignments motivating enough to call
the leap from one to the other ‘natural’.

3.2.1 The Structure Preserving Axioms

In this section I will present what I call the structure preserving axioms. To the extent
that I have read the literature, I have not come across probability functions defined
in terms of the structure preserving axioms. I will first present the axioms and then
explain how they naturally generalize the properties of evaluation functions to the
interval [0, 1].

Definition 7. A probability function is a function p : F → [0, 1] which satisfies
the following properties for propositions ϕ, ψ ∈ F :
A1 p(¬ϕ) + p(ϕ) = 1;
A2 p(ϕ ∨ ϕ) + p(ϕ ∧ ψ) = p(ϕ) + p(ψ);
A3 p(τ) = v(τ) for a tautology τ and evaluation v.

The first two axioms follow naturally from invariants we can easily discover im
Definition 2. Recall that by (5).

v(ϕ ∧ ψ) = v(ϕ) · v(ψ)

and (6)
v(ϕ ∨ ψ) = v(ϕ) + v(ψ)− v(ϕ) · v(ψ)

which are begging to be combined into the familiar form

v(ϕ ∨ ψ) = v(ϕ) + v(ψ)− v(ϕ ∧ ψ).
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We can, then, rewrite the conditions in Definition 2 into the more symmetric forms:

v(¬ϕ) + v(ϕ) = 1 (12)

v(ϕ ∧ ψ) = v(ϕ) · v(ψ) (13)

v(ϕ ∨ ψ) + v(ϕ ∧ ψ) = v(ϕ) + v(ψ) (14)

In this form, the linear conditions (12) and (14) also reveal to us something profound
about the structure of propositional logic semantics: there is a duality between ¬ and
its absence shown by (12) and another duality between ∧ and ∨ shown by (14). If we
replace v with p, therefore preserving these dualities for a probability function, we get
axioms A1 and A2 respectively.

A3 comes from preserving a different invariant of evaluations. Notice that A3
does not depend on the choice of evaluation. This is because the value of a tautology is
another structural invariant of the evaluation function. A3 codifies this invariance and
grounds the values of a probability function in the values of an evaluation function.
Of course, we could have equivalently specified A3 in terms of contradictions.

Proposition 7. For a contradiction ⊥ ∈ F , p(⊥) = 0.

Proof. Let ⊥ be a contradiction. ¬⊥ is a tautology so by A1 and A3, p(⊥) = 1 −
p(¬⊥) = 1− 1 = 0.

Why can’t we also generalize condition (13) and include p(ϕ ∧ ψ) = p(ϕ) · p(ψ) in
the axioms? If we were to accept p(ϕ ∧ ψ) = p(ϕ) · p(ψ) as an axiom which holds for
all ϕ, ψ ∈ F then we would be forced to conclude that for any φ ∈ F ,

0 = p(⊥) = p(φ ∧ ¬φ) = p(φ) · p(¬φ)

so one of p(φ), p(¬φ) must be 0 and by A1 the other must be 1. This would mean that
every proposition can only take on the values 0, 1 and a probability function would
simply be an evaluation! Since our goal was to generalize evaluations to the interval
[0, 1] we cannot include a probabilistic version of (13) in our axioms. Of course, when
p(ϕ ∧ ψ) = p(ϕ) · p(ψ) happens to be true of some propositions ϕ, ψ ∈ F , they are in
a well known relationship called probabilistic independence.

It turns out that just by preserving the invariants of evaluation and extending them
to a function on the interval [0, 1], we recover a finitely additive probability function.
That probability functions generalize evaluations can be seen most clearly from the
following result.
Proposition 8. An evaluation v is a probability function.

Proof. We will show that v satisfies A1, A2, and A3. By 4, for any proposition ϕ,
v(¬ϕ)+v(ϕ) = 1 (A1 ). Combining 5 and 6 we get that v(ϕ∨ψ)+v(ϕ∧ψ) = v(ϕ)+v(ψ)
(A2 ). A3 follows since v is an evaluation already!

We will now prove some results to demonstrate that our axioms are sufficiently
powerful to characterize a finitely additive probability function. First we will derive
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that logically equivalent propositions have the same probability and then we will prove
finite additivity.

Proposition 9. For any propositions ϕ, ψ ∈ F , if ϕ |= ψ then p(ϕ) ≤ p(ψ).

Proof. Suppose ϕ |= ψ. First we show that |= ¬ϕ ∨ ψ. If v is an evaluation such that
v(ϕ) = 1 then by Definition 3 v(ψ) = 1. So, by Definition 2, v(¬ϕ ∨ ψ) = 1. On the
other hand, if v(ϕ) = 0, then by Definition 2, v(¬ϕ) = 1. So, v(¬ϕ∨ψ) = 1. Therefore
|= ¬ϕ ∨ ψ, or in words, ¬ϕ ∨ ψ is a tautology.
By A3, A2, and A1

p(¬ϕ ∨ ψ) = 1

p(¬ϕ) + p(ψ)− p(¬ϕ ∧ ψ) = 1

1− p(ϕ) + p(ψ)− p(¬ϕ ∧ ψ) = 1

p(ψ) = p(ϕ) + p(¬ϕ ∧ ψ)
p(ϕ) ≤ p(ψ).

Corollary 10. For any propositions ϕ, ψ ∈ F , if ϕ ≡ ψ then p(ϕ) = p(ψ).

Proof. if ϕ ≡ ψ then ϕ |= ψ and ψ |= ϕ. So by Proposition 9, p(ϕ) = p(ψ).

Definition 8. Propositions ϕ and ψ are disjoint exactly when

ϕ ∧ ψ ≡ ⊥.

Proposition 11. Let p be a probability function on a finite propositional language L.
If ϕ and ψ are disjoint then

p(ϕ ∨ ψ) = p(ϕ) + p(ψ).

More generally, for pairwise disjoint propositions ϕ1, . . . , ϕk,

p(

k∨
i=1

ϕi) =

k∑
i=1

p(ϕi). (15)

Proof. We prove this by induction.
Base case: By A2, p(ϕ∨ψ) = p(ϕ)+p(ψ)−p(ϕ∧ψ). Since ϕ∧ψ ≡ ⊥, by Proposition
7, p(ϕ ∧ ψ) = 0. Therefore p(ϕ ∨ ψ) = p(ϕ) + p(ψ).
Inductive Case: Suppose (15) holds for k ∈ N and that we have ϕ1, . . . , ϕk+1 pairwise
disjoint propositions. Then by the base case and the inductive hypothesis:

p(

k+1∨
i=1

ϕi) = p(

k∨
i=1

ϕi ∨ ϕk+1)
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= p(

k∨
i=1

ϕi) + p(ϕk+1)

=

k∑
i=1

p(ϕi) + p(ϕk+1)

=

k+1∑
i=1

p(ϕi)

To summarize, a probability function is a natural generalization of evaluations to
the interval [0, 1] in that it is defined by simply preserving the structural invariants of
evaluations.

3.2.2 Insight into Probability Functions

Having defined probability functions on propositions, in this section we will examine
an important result about probability on propositions which shows that all probability
values are determined by the probability values of the atomic states. It is so important,
that it is taken to be axiomatic in [5]. First we must prove that atomic states are
disjoint.

Proposition 12. Let L be a finite propositional language with atomic states Ω. Any
two distinct atomic states ω, ω′ ∈ Ω are disjoint.

Proof. Suppose ω, ω′ differ in atomic proposition Ai. Then ω∧ω′ ≡ Ai∧¬Ai∧(. . . ) ≡
⊥.

Theorem 13. Let p be a probability function on a finite propositional language L,
with set of atomic states Ω. For any proposition ϕ ∈ F ,

p(ϕ) =
∑
ω|=ϕ

p(ω)

where the sum ranges over those ω ∈ Ω that entail ϕ.

Proof. By Theorem 6, ϕ ≡
∨
ω|=ϕ

ω. Because atomic states are pairwise disjoint by

Proposition 12, we can apply Proposition 11,

p(ϕ) = p(
∨
ω|=ϕ

ω) =
∑
ω|=ϕ

p(ω).

We can see from Theorem 13 that once the probability of the atomic states are speci-
fied, the probability of all other propositions are determined. This allows us to augment
the truth table to be able to read off the probability of any proposition.
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Example 8. We add a column for the probability of each atomic state.

atomic state p A1 A2 A3 A2 ∧A3 A1 ∨ ¬A1 ¬A2 ∨ ¬A3

A1 ∧A2 ∧A3 0.1 1 1 1 1 1 0
A1 ∧A2 ∧ ¬A3 0 1 1 0 0 1 1
A1 ∧ ¬A2 ∧A3 0.2 1 0 1 0 1 1
A1 ∧ ¬A2 ∧ ¬A3 0.3 1 0 0 0 1 1
¬A1 ∧A2 ∧A3 0 0 1 1 1 1 0
¬A1 ∧A2 ∧ ¬A3 .15 0 1 0 0 1 1
¬A1 ∧ ¬A2 ∧A3 .25 0 0 1 0 1 1
¬A1 ∧ ¬A2 ∧ ¬A3 0 0 0 0 0 1 1

We can read off the probability of propositions based on the probabilities of the atomic
states. Recall Example 7 for the first two disjunctive normal forms.

• p(A2 ∧A3) = p(A1 ∧A2 ∧A3) + p(¬A1 ∧A2 ∧A3)
= 0.1 + 0
= 0.1

• p(A2) = p(A1∧A2∧A3)+p(A1∧A2∧¬A3)+p(¬A1∧A2∧A3)+p(¬A1∧A2∧¬A3)
= 0.1 + 0 + 0 + 0.15
= 0.25

• p(A1 ∨ ¬A1) = p(A1 ∧A2 ∧A3) + p(A1 ∧A2 ∧ ¬A3) + p(A1 ∧ ¬A2 ∧A3)
+ p(A1 ∧ ¬A2 ∧ ¬A3) + p(¬A1 ∧A2 ∧A3) + p(¬A1 ∧A2 ∧ ¬A3)
+ p(¬A1 ∧ ¬A2 ∧A3) + p(¬A1 ∧ ¬A2 ∧ ¬A3)
= 1

Because the probability of any proposition is fully specified by the probability of
the atomic states, we can rewrite Theorem 13 in terms of vectors.

Definition 9. For a propositional language L, with set of atomic states Ω =
{ω1, ..., ω2n}, and equipped with a probability function p, denote the vector of probabil-
ities of the atomic states by

p⃗ = [p(ω1), ..., p(ω2n)]
T

Further for each proposition ϕ ∈ F , let I⃗ϕ = [Iϕ1, ..., Iϕ2n ]
T be the indicator vector

such that

Iϕi =

{
1 if ωi |= ϕ

0 otherwise
.

Corollary 14. For a probability function p on a finite propositional language L,

p(ϕ) = I⃗ϕ · p⃗

for proposition ϕ ∈ F .

Proof. This follows from Theorem 13 and Definition 9.
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Example 9. Continuing Example 8, label the atomic states in descending order of
the truth table:

ω1 = A1 ∧A2 ∧A3, ω2 = A1 ∧A2 ∧ ¬A3, ω3 = A1 ∧ ¬A2 ∧A3

ω4 = A1 ∧ ¬A2 ∧ ¬A3, ω5 = ¬A1 ∧A2 ∧A3, ω6 = ¬A1 ∧A2 ∧ ¬A3

ω7 = ¬A1 ∧ ¬A2 ∧A3, ω8 = ¬A1 ∧ ¬A2 ∧ ¬A3

In Example 8,

p⃗ = [0.1, 0, 0.2, 0.3, 0, 0.15, 0.25, 0]T

I⃗A2∧A3
= [1, 0, 0, 0, 1, 0, 0, 0]T

I⃗A2
= [1, 1, 0, 0, 1, 1, 0, 0]T

I⃗τ = [1, 1, 1, 1, 1, 1, 1, 1]T

It can be easily verified that p(ϕ) = I⃗ϕ · p⃗ agrees in value with the results for each of
A1, A2 ∧A3, τ in Example 8.
Note the indicator vectors are just the columns of the truth table!

Three remarks are in order.
1. The vector representation gives us a geometric intuition for the space of prob-

ability functions on the language. Each probability function can be associated
with a point on the convex hull of the simplex formed by the tips of the vectors
representing the atomic states (which are simply the unit vectors along each axis).

2. We can draw a parallel between evaluations and probability functions. An eval-
uation is fully determined by the atomic propositions and a probability function
is fully determined by the atomic states.

3. Theorem 13 tells us that the probability of a proposition is the sum of the proba-
bility of the propositions of the atomic states which entail the proposition. Since
by Proposition 5 being entailed by an atomic state is the same as being true
under one of the evaluations, the probability of a proposition can be thought of
as a measure of the possibility that the proposition is true. A connection between
probability and modal logic motivated by this observation is briefly explored in
Appendix A.

Before moving on, we define what it means for propositions to be mutually exclusive
which is not the same as them being disjoint. In addition, we define what we will call
ψ-conditional probability distributions.

Definition 10. Let L be a finite propositional language equipped with probability
function p. We say two propositions ϕ, ψ are mutually exclusive exactly when

p(ϕ ∧ ψ) = 0.
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Clearly, if two propositions are disjoint then they are mutually exclusive, but the
other way does not always hold. Disjoint is a logical notion which says that the con-
junction of two propositions is a contradiction and mutually exclusive is a probabilistic
notion which says that the conjunction of two propositions has probability 0.

Definition 11. A ψ-conditional probability function pψ : F → [0, 1] is a probability
function which additionally satisfies

pψ(ψ) = 1.

Note that Definition 11 is not the same as the usual definition of conditional proba-
bilities which are defined in terms of an already existing probability function. Typically
one defines a conditional probability function p(· | ψ) in terms of an unconditional
probability function p by

p(ϕ | ψ) := p(ϕ ∧ ψ)
p(ψ)

.

p(· | ψ) happens to be a ψ-conditional probability function because

p(ψ | ψ) = p(ψ ∧ ψ)
p(ψ)

=
p(ψ)

p(ψ)
= 1.

We define ψ-conditional probability functions in order to specify a more restricted
type of probability function which will come into play to show how a set-theoretic
probability space can be represented in a propositional probability space (Section 4.2).

3.2.3 Standard Semantics

In this section we discuss how entailment can be generalized from propositional logic
to probabilistic logic to give a concrete meaning to probabilistic inference. The account
presented here comes from [5, Ch.7] with some modifications to naming conventions.

Recall from Definition 3 that in propositional logic

ϕ1, ..., ϕk |= ψ

when for any evaluation v under which the premises ϕ1, ..., ϕk are true, v makes the
conclusion ϕ true. As shown in Section 3.2, probability functions naturally general-
ize evaluation functions. Therefore, to generalize entailment, we will essentially just
substitute a probability function in for the evaluation in Definition 3.

Definition 12. Premises ϕX1
1 , ..., ϕXk

k p-entails (probabilistic entailment) con-
clusion ψY , denoted

ϕX1
1 , . . . , ϕXk

k |≈ ψY , (16)

exactly when for all probability functions p:

if p(ϕ1) ∈ X1, . . . , p(ϕk) ∈ Xk then p(ψ) ∈ Y, (17)

where X1, . . . , Xk, Y ⊆ [0, 1].
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Definition 12 is referred to in [5, Ch. 7] as the standard semantics. Note that
X1, . . . , Xk, Y are subsets of [0, 1]. We can think of ϕX1

1 , . . . , ϕXk

k as constraints on the
probability function of the form p(ϕi) ∈ Xi where (i ∈ {1, . . . , k}) and then p(ψ) ∈ Y
as saying that the possible probabilities of ψ under those constraints are contained in
Y . The next proposition shows how entailment is a special case of p-entailment.

Proposition 15. If ϕ
{1}
1 , ..., ϕ

{1}
k |≈ ψ{1} then ϕ1, ..., ϕk |= ψ.

Proof. Suppose for an evaluation v, v(ϕ1) = 1,. . . ,v(ϕk) = 1. Then since evaluations
are also probability functions (Proposition 8), by Definition 12, v(ψ) = 1.

Something to note is that if Y = [0, 1] then any p-entailment holds as we can see
from the next proposition.

Proposition 16. ϕX1
1 , . . . , ϕXk

k |≈ ψ[0,1] for any ϕ1, ..., ϕk, ψ.

Proof. If p satisfies ϕX1
1 , . . . , ϕXk

k then regardless of what p is, p(ψ) ∈ [0, 1].

In propositional logic we often ask what propositions follow from certain other
propositions. In probabilistic logic we can ask questions of the form

ϕX1
1 , . . . , ϕXk

k |≈ ψ?

which asks for the set of possible probabilities for our conclusion, Y , given some
premises. By Proposition 16 we can always replace ? with [0, 1] which is not very
useful. What we mean by a question like

ϕX1
1 , . . . , ϕXk

k |≈ ψ?

is for the smallest possible set for which the entailment holds. This gives us the set
of possible beliefs to which that the premises absolutely constrain the conclusion. We
accordingly define minimal p-entailment.

Definition 13. Premises ϕX1
1 , ..., ϕXk

k minimally p-entail conclusion ψY , exactly

when ϕX1
1 , . . . , ϕXk

k |≈ ψY and there is no subset Z ⊆ Y such that ϕX1
1 , . . . , ϕXk

k |≈
ψZ .

Example 10. The following are some instances of some minimal p-entailments.

1. A
[0.2,0.7]
1 |≈ (¬A1)

[0.3,0.8]

2. A
{0.5}
1 , A

[0,0.6]
2 |≈ (A1 ∧A2)

[0,0.5]

3. (A1 ∧A2)
{0.25}, (A1 ∨ ¬A2)

{1} |≈ A
{0.25}
2 .

p-entailment show us how we can generalize the notion of inference from proposi-
tional logic to a probabilistic logic.

4 Comparing the frameworks

Having developed the finite propositional framework for probability, we now compare
it to the finite set-theoretic framework for probability theory. The main argument
we make in favor of the propositional framework is that although both frameworks
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can abstractly represent one another, the elementary outcomes in the set-theoretic
framework are conceptually reducible to the propositions in a propositional framework
in a way that the reverse does not hold.

To make the argument concrete we will consider two cases in which we draw from
a bag of three balls. We will analyze the probability space of both frameworks for each
case.
Case 1: When we draw from the bag, we might come out empty-handed or we might
pull out several balls at once (they are tiny enough like marbles to do so).
Case 2: When we draw from the bag, we draw one of the three balls.

To begin let us make explicit what a probability space in each framework is.
Definition 14 draws from [8, Ch. 1] and Definition 15 is original.

Definition 14. A set-theoretic probability space (Ω,Σ, p) consists of a set of
elementary outcomes

Ω = {e1, ..., en},
a sigma algebra of elements from Ω

Σ,

and a probability function
p,

defined by Kolmogorov’s axioms (1), (2).

Definition 15. A propositional probability space (Pr,F , p) consists of a set of
atomic propositions

Pr = {A1, ..., An},
a set of all propositions generated from Pr (Definition 1)

F ,

and a probability function
p,

defined by the structure preserving axioms A1, A2, A3.

4.1 Case 1

4.1.1 Set-theoretic

To represent case 1 in the set-theoretic framework, we must first identify the elemen-
tary outcomes. There are 8 elementary outcomes that could arise from the experiment
of drawing balls. These outcomes correspond to which combination of balls were drawn.
Label the balls b1, b2, b3. The elementary outcomes would be

e0 : no ball drawn

e1 : only b1 drawn, e2 : only b2 drawn, e3 : only b3 drawn

e4 : only b1, b2 drawn, e5 : only b2, b3 drawn, e6 : only b1, b3 drawn

e7 : only b1, b2, b3 drawn.
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The elementary outcome set Ω would be {e1, . . . e8} and the set of events P(Ω). The
probaility space would therefore be

({e1, . . . e8},P(Ω), p)

for some probability function p.

4.1.2 Propositional

To represent case 1 in the propositional framework, we must identify the basic atoms
of the phenomena that we can describe (this is different from the elementary outcomes
of the experiment). There are 3 atomic propositions A1, A2, A3 corresponding to what
balls were drawn. Ai stands in for the proposition ‘ball i was drawn.’. Therefore the
probability space would be

({A1.A2, A3},F , p)
for some probability function p.

Note that the atomic states correspond to all the possibilities we might observe.
For example,

• A1 ∧A2 ∧A3 says all balls will be in hand after draw.
• A1 ∧ ¬A2 ∧A3 says ball 1 and ball 3 will be in hand after draw.
• ¬A1 ∧ ¬A2 ∧ ¬A3 says no ball is in hand after draw.

4.1.3 Comparison

The most striking thing to observe is that in the set-theoretic framework we needed
8 elementary outcomes whereas in the propositional framework we only needed 3
atomic propositions to fully characterize the scenario. We can learn from this that the
elementary outcomes of an experiment are not always the most elementary components
we can break a problem into. Sometimes atomic propositions are a more fundamental
unit of analaysis.

The above analysis also shows us how we can represent the propositional framework
in a set-theoretic framework. If we label the 8 possible atomic states ω1, . . . , ω8 then we
can take Ω, now the set of atomic states, to be the set of elementary outcomes in the
set-theoretic framework. For example, ¬A1 ∧¬A2 ∧¬A3 would correspond to e0 since
both express that no ball was drawn. A proposition like A1 ∧ A2 can be represented
by what is effectively its disjunctive normal form (A1 ∧ A2 ∧ A3) ∨ (A1 ∧ A2 ∧ ¬A3)
as the event {A1 ∧ A2 ∧ A3, A1 ∧ A2 ∧ ¬A3} which would correspond to {e8, e4}. By
Theorem 13, The respective probability function acts the same on both.

p(A1 ∧A2) = p(A1 ∧A2 ∧A3) + p(A1 ∧A2 ∧ ¬A3)

and by (2),

p({{e8, e4}}) = p({{e8}} ∪ {e4})
= p({e8}) + p({e4}).
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Given that we can convert a propositional probability space to a set-theoretic prob-
ability space as outlined above, wouldn’t that mean that a set-theoretic framework is
at least as powerful as a propositional framework, so that there is no reason for prefer-
ring a propositional framework? While we can wrap atomic states in sets to represent
a propositional analysis in a set-theoretic analysis, to do so is undesirable for two rea-
sons. First, the wrapping things in sets is unnecessary when you can work directly
with atomic states. Second, the atomic states are not the most fundamental unit of
conceptual analysis. To treat atomic states as elementary outcomes is to ignore what
is conceptually more primitive, the atomic propositions. In a meaningful sense, the
set-theoretic representation is, in this case, conceptually reducible to the propositional
framework since the elementary outcomes can really be thought of as being composed
of a conjunction of atomic propositions.

4.2 Case 2

4.2.1 Set-theoretic

In case 2, we are told that we draw one of the three balls so there are three elementary
outcomes of the experiment:

e1 : only b1 drawn, e2 : only b2 drawn, e3 : only b3 drawn.

The set-theoretic probability space would be

({e1, e2, e3},P({e1, e2, e3}), p).

4.2.2 Propositional

The propositional account of this case is slightly more nuanced. Similar to case one,
we will label the elementary observations with atomic states A1, A2, A3 in which Ai
stands in for the proposition ‘ball i was drawn.’ A1, A2, A3 are merely symbols with no
intrinsic logical connection between them. The scenario, however, does specify a logic
relation between A1, A2, A3 because it says that exactly one of them will be drawn. It
is our responsibility to formalize how A1, A2, A3 are logically related to one another.
The assumption that exactly one of the three balls will be drawn is more precisely
expressed by the probabilistic assumption that A1, A2, A3 are exhaustive and pairwise
mutually exclusive.

p(A1 ∨A2 ∨A3) = 1, (18)

p(Ai ∧Aj) = 0 for i ̸= j. (19)

We can think of these assumptions as constituting a logic model of our phenomena.
They are the axioms of our phenomena in a similar way to how the Peano axioms
pick out particular intuitive properties of the phenomena we call natural numbers
from which we can derive more facts about numbers. 18 and 19 are the axioms of our
phenomena from which we can deduce, for example, that the probability of drawing
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ball 1 or 2 is the sum of their respective individual probabilities:

p(A1 ∨A2) = p(A1) + p(A2)− p(A1 ∧A2) = p(A1) + p(A2).

All this to say, case 2 is represented by a propositional probability space

({A1, A2, A3},F , pψ)

where F is generated from {A1, A2, A3} according to Definition 1 and pψ is a ψ-
conditional probability function (Definition 11) where

ψ := (A1 ∨A2 ∨A3) ∧ ¬(p(A1 ∧A2)) ∧ ¬(p(A2 ∧A3)) ∧ ¬(p(A1 ∧A3)).

pψ builds the assumptions 18 and 19 into the probability space.

4.2.3 Comparison

We can see from these examples how any set-theoretic probability space can be con-
verted to a propositional probability space. Given a set-theoretic probability space
({e1, . . . , en},Σ, p) we can convert it to a propositional probability space (Pr,F , pψ)
by setting Pr = {e1, . . . , en}, and choosing pψ to be the ψ-conditional probability
function such that

pψ(ei1 ∨ . . . ∨ eik) := p({ei1 , . . . eik})
where

ψ := [
∧

i,j∈{1,...,n}
i ̸=j

¬(ei ∧ ej)] ∧ (e1 ∨ ... ∨ en).

Aside from showing how we can represent set-theoretic probability spaces as proposi-
tional probability spaces, we can learn from this conversion process that the elementary
outcomes of an experiment are essentially just mutually exclusive and exhaustive
propositions. From this point of view, once again, propositions are the conceptually
more fundamental unit of analysis and elementary outcomes are taken to be spe-
cial kinds of propositions. In case one, we saw that the elementary outcomes could
be understood as atomic states and in case two the elementary outcomes are simply
mutually exclusive and exhaustive propositions! In both cases the notion of elementary
outcomes is conceptually reducible to a propositional perspective!

This is perhaps not so surprising when we observe that the number of proposi-
tions generated from n atomic propositions is 22

n

(there are 2n atomic states and each
proposition is some disjunction of atomic states by Theorem 6) while the maximum
number of events that can be generated from an outcome space of n elementary out-
comes is 2n (by taking the power set). A propositional framework is simply able to
express more using less primitives.

Although a propositional framework is conceptually more fundamental than a set-
theoretic one, from the vantage point of propositions, we can understand when a set-
theoretic probability space might have some utility. By wrapping atomic propositions
in sets to represent the outcomes of an experiment one is effectively using a convenient
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data structure that builds in the assumption that the atomic propositions are mutually
exclusive. If someone knows that their atomic propositions are mutually exclusive, to
wrap them in sets might have computational advantages.

5 Summary

We have shown how we can naturally recover a finitely additive probability function on
propositions by aiming to extend evaluation functions from the discrete truth values of
{0, 1} to the interval [0, 1] in a way that preserves key invariants. This differs from the
traditional approach to probability theory on sets of events which uses the Kolmogorov
axioms to define probability functions because they give the right “formal properties”
[2]. We further showed how we can generalize the notion of entailment in propositional
logic to a probabilistic logic using the notion of p-entailment. This enables us to
combine the conceptual infrastructure of logical inference with probabilities (which
has applications to systematizing inductive logics based on probabilities [3]).

After setting up both frameworks, we showed that both the set-theoretic and
the propositional frameworks can represent one another (we can convert one to the
other). However, despite the frameworks being representationally equivalent, we also
showed that elementary outcomes in a set-theoretic probability space can be more
fundamentally understood as special kinds of propositions.

Given that probability functions on propositions are naturally motivated as extend-
ing propositional logic and elementary outcomes can be conceptually reduced to special
kinds of propositions, we conclude that finite probability theory should be done and
taught in a propositional framework.

Appendix A Modal Logic and Probability

In this section we will examine a result connecting the logic of possibility (modal logic)
with probability. Some background in modal logic is assumed because this is only
intended as a brief section to note an interesting result, the meaning of which I have
not yet figured out. Initially I attempted to use the result to show that we can think of
degree of belief in a proposition as a measure of the possibility that the proposition is
true in the real world, but I was not able to develop a sufficiently compelling account.

In modal logic we extend our language to include statements of the form:
• ϕ→ ψ which is usually read ‘if ϕ then ψ’ and is semantically equivalent to ¬ϕ∨ψ.
• □ϕ which is usually read ‘ϕ is necessary’.
• ♢ϕ which is usually read ‘ϕ is possible’.

We will only consider a fragment of the modal logic K where □ and ♢ can not scope
over other □’s and ♢’s. The axioms for K [4] can be stated for ϕ, ψ ∈ F
N If |= ϕ then □ϕ.
D □(ϕ→ ψ)→ (□ϕ→ □ψ).

We now show that for a probability distribution p, the statement p(ϕ) = 1 satisfies N
and D (over the fragment we are considering) when it is substituted in for □ϕ.
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N If |= ϕ then by Definition 4 ϕ is a tautology so by A1, p(ϕ) = 1. This shows that

If |= ϕ then p(ϕ) = 1.

D Suppose p(ϕ → ψ) = 1 this is the same as saying p(¬ϕ ∨ ψ) = 1. Therefore,
by A2, p(¬ϕ) + p(ψ) − p(¬ϕ ∧ ψ) = 1. If p(ϕ) = 1 then p(¬ϕ) = 0 (by A1) so
p(ψ)− p(¬ϕ ∧ ψ) = 1. Since p(ψ) ≤ 1 and p(¬ϕ ∧ ψ) ≥ 0, p(ψ) = 1. This shows
that

[p(ϕ→ ψ) = 1]→ ([p(ϕ) = 1]→ [p(ψ) = 1]).

Given that p(ϕ) = 1 can stand in for □ϕ, what would stand in for ♢ϕ? In modal logic,

¬□ϕ ≡ ♢¬ϕ.

We observe a similar relationship in probability:

p(ϕ) ̸= 1⇔ p(ϕ) < 1⇔ p(¬ϕ) > 0

indicating that we should take p(ϕ) > 0 to stand for ♢ϕ.

Given that p(ϕ) = 1 obeys the axioms for a fragment of K might we be able to
interpret probability or belief modally?
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